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Executive Summary 

Recent advances in data science including breakthroughs in deep learning algorithms and 
advanced computational hardware will make it possible to accelerate scientific discovery by 
several orders of magnitude by conducting experiments at high repetition rates (HRR) (>10 
shots/hour) with current and future generation high power lasers. Machine learning (ML) has 
shown utility in many areas of everyday life from reading hand-written text to self-driving cars 
and more recently in scientific applications relevant to IFE research (Spears, 2018) (Hatfield P. 
W., 2021). As safely operating self-driving cars at high speed requires synchronizing the inputs 
from a variety of sensors in real time, so to does safely operating a HRR laser facility designed to 
maximized a particular application, such as IFE. The example of self-driving cars provides a 
template for creating self-driving laser experiments where heterogeneous data is combined to 
operate the many components a single laser experiment (or “shot”). For this to be realized the laser 
(energy, pulse duration, focal spot, etc.) and target characteristics (foil thickness, shape, etc.) must 
be controlled and characterized prior to the shot while HRR-capable diagnostics must be rapidly 
and accurately analyzed after the laser has been delivered to the target. Prior to the experiment, 
100’s-1k’s of simulations (ensemble simulations) can be used to scan a large set of input 
parameters such as laser energy and pulse shape. Deep learning can then be used to create fast 
“surrogate models” (Djordjević, 2021) that can be used to guide experimental exploration, and 
retrained with experimental data (Gaffney, 2019) (Humbird, 2019) to provide a basis for improving 
the fidelity of HED modeling capability. Coupled with artificial intelligence (AI), it will be 
possible to make decisions that will “drive” experiments to explore vast regions of high-
dimensional parameter space for optimizing experimental quantities and ultimately improving the 
physics models used to simulate them. Along with the more obvious aspects of HRR experiments, 
IFE research will also need massive increases in speed for target development, production, 
characterization, and alignment. AI is already making an impact on the NIF as it is being used to 
identify optical defects on the main beam line with success rates that exceed that of trained experts 



(Trummer, 2018). Lastly, ML will be necessary to handle (filter, analyze, store) the incredible 
amounts of data generated by experiments at HRR and ensemble simulations. Further developing 
these technologies and more importantly integrating them into autonomous experimental facilities 
will provide a path forward for rapid and efficient scientific progress for exploring the highly non-
linear science inherent to inertial fusion energy (IFE).  
 
Introduction 
 

Until recently, much of laser-driven high energy density (HED) physics research has 
focused on large, energetic drivers (lasers, pulsed power machines) that are mostly single shot 
(about 1 shot / hour). Multiple high-repetition-rate (HRR), high-intensity short- pulse lasers have 
recently come online around the world (>1 shot/minute), with many more poised to be built in the 
next few years including kJ-class nanosecond pulse-duration drivers (Dyer, 2021). These lasers 
introduce a radical paradigm shift in the way HED experiments could be operated (Ma, 2021), 
however, the technology to utilize them to their full potential (i.e. at >1 Hz) lags behind. Typically, 
the process for scientific discovery has been a slow process compared to the possibilities offered 
by integrating AI technologies with HRR experimental platforms. First, theory and simulations 
developed over months/years provide a scientific hypothesis as the basis for a proposal for 
experimental time on a given laser facility; once accepted, experimentalists work to design targets 
and diagnostics (months); the experiments are executed, providing 10-100 datapoints; finally, 
time-consuming data analysis is performed and compared to new simulations to understand the 
experimental data and provide a new scientific hypothesis or proposed changes to experiments.  In 
order to accelerate the rate of scientific discovery, target production/characterization, laser 
configuration/diagnostics, and experimental diagnostic analysis must all be able operate at 
commensurate rates. There are three main thrusts where ML can be useful for HRR experiments: 
(i) For fast laser/experimental data analysis; (ii) For autonomous real-time laser/target/diagnostic 
control; and (iii) Developing surrogate models for physics exploration/optimization. To enable 
this, advanced computational methods such as ML must be leveraged to analyze multi-modal data 
while AI can combine heterogeneous data and interpret it to guide experimental exploration 
without human intervention. Figure 1 shows the eventual vision for a fully integrated laser-driven 
experimental system that capitalizes on HRR and a series of feedback loops to simultaneously 
accelerate both empirical discovery and computer model development. First, the laser must be able 
to operate safely and with high stability while making changes proposed by a controlling 
algorithm. Next targets must be delivered on demand, ideally with some flexibility in construction, 
adequately characterized, and aligned prior to shot time. Diagnostics must also be able to operate 
in the hostile experimental environment without using traditional recording media such as image 
plate or film (M. J.-E. Manuel, 2020), and importantly be analyzed both rapidly and accurately 
(Mariscal, 2021) (Simpson, 2021). In order to compare experimentally acquired data to 
simulations, both sets of data will need to be combined in a “latent” space where important features 
have been distilled through ML. All pieces of this loop will benefit from the application of ML to 
increase speed while maintaining high accuracy. It is important to note that when fusion becomes 
robust and reliable, the machine repetition rate will necessarily increase by many orders of 
magnitude from what the current-generation ICF research facilities operate at. Thus, the 
integration of these technologies will be a key underpinning of a safe and stable power plant. 



 

Machine learning has made large strides over the last decade and has shown great utility in 
science, especially in regions where large datasets (“big data”) can be generated. Some examples 
include classification of astrophysical objects (Jacobs, 2020), predictions of tokamak disruption 
(Rea, 2018), or identification of damage defects in optics used on the National Ignition Facility 
(Trummer, 2018), and prediction or optimization of ICF designs (Hatfield P. W., 2019) (Anirudh, 
2020)and HED experiments (Martin, 2018). Demonstrations of the use of neural networks for 
analysis of diagnostic data from laser-driven experiments are increasing and showing the ability 
to exceed human-tended analysis in accuracy while decreasing the time to complete analysis by 
many orders of magnitude (from hours to milliseconds) (Mariscal, 2021) (Simpson, 2021). Further, 
by connecting simulations to diagnostic models it will be possible to perform “enhanced” multi-
modal analysis where parameters that are impossible (or extremely difficult) to measure can be 
deduced. As a simple example, it is possible to deduce the pressure of an ideal gas by measuring 
the temperature, density, and volume without directly measuring it. In the context of IFE, advanced 
simulations codes would replace the ideal gas law to, for example, deduce the pressure achieved 
during an ICF implosion. At multi-Hz experimental rates, it is likely that several GB/s of data will 
be produced, or about a TB every 15 minutes. At such rates, ML will likely be needed to enable 
on-the-fly data reduction, filtration, and storage where decreased latency in these processes can be 
enhanced by ML-enabled “edge” computing near diagnostics (Bhardwaj, (2021).). Additionally, 
ML is being incorporated into laser control systems to ensure stable and safe operation (Galvin, 
2018). Finally, AI has demonstrated utility in understanding highly non-linear systems such as 

 
Figure 1: Outline of integrated HRR loops for rapid scientific advancement. The green, blue, and tan 
loops all rely on extremely fast & accurate analysis through ML in order to safely and intelligently 
operate the integrated system for self-driving science exploration. (from T. Ma, et al., (Ma, 2021)) 



inertial confinement fusion (Gaffney, 2019) (Hatfield P. W., 2019) (Humbird, 2019). To develop 
quick surrogate models, hundreds or thousands of low-dimensional or reduced-fidelity radiation-
hydrodynamics or particle-in-cell (PIC) simulations are generated and using deep learning is used 
to develop surrogate models that can interpolate across wide swaths of parameter space (laser 
intensity, target thickness, etc.) to inform predictions of experimental outcomes. By enabling HRR 
experiments, it will be possible to generate the many thousands of data samples that are necessary 
to create a data-driven model. 
 

Integrating all of the aforementioned pieces through AI will be necessary to realize the full 
potential of IFE research at high repetition rates. For example, a surrogate model generated from 
many simulations can provide a base model to which the experimental data can be compared. By 
utilizing transfer learning, these models can in principle be retrained on-the-fly with streaming 
NN-analyzed experimental data to combine multi-modal data and create real-world-informed 
models. In turn, these empirically informed models can be used to improve the physics models 
contained in HED codes. In this way, it will be possible to drastically accelerate the rate of learning 
from HRR experimental systems in support of key components of IFE.  
 
Key Metrics 

• Laser technology has enabled high-energy (10’s J-kJ) multi-Hz operation. Compared to 
shot/hr facilities, this represents an opportunity to increase data throughput by ~36,000X. 

• While lasers can operate at multi-Hz, control systems often still require “hands on” 
operation. ML must be leveraged to provide the fine control and exquisite stability that 
would be necessary for a IFE power plant. 

• A typical NIF shot produces ~150 GB of data (laser and experimental data). If data is 
comparable, a rep-rated IFE facility could in principle generate 1.5 TB/second which 
quickly becomes “big data” and intractable via conventional “brute force” analysis. Data 
pipeline handling through AI will be necessary to filter, analyze, and retain important data. 

• Human-operated analysis could take several hours to analyze a single piece of data while 
an optimized analysis algorithm may take several seconds to generate the reduced 
quantities of interest. An optimized NN for analysis can in principle analyze large (several 
MP) data on the millisecond time-scale, representing a 1,000X speed increase. 

• It is now possible to utilize 1,000’s of reduced fidelity simulations to scan multi-
dimensional parameter space. While this is still computationally expensive, machine 
learning can be used to create surrogate models that interpolate between sparsely sampled 
parameter space. These models are thousands of times faster to evaluate (Kluth, 2020) for 
comparison/retraining during HRR experimental operations and have proven to be 
predictive of “future” experiments with relatively sparse datasets (Humbird, 2019). 

 
 
Program Outline 

To increase the rate of learning from HRR facilities in support of IFE, we propose a 
program that would seek to integrate experiments and simulations , through machine learning and 
AI.  

Simulation groups should work to develop a robust methodology to rapidly scan input 
parameters and develop neural networks that can point to areas of interest and optimization. 



Computational advances utilizing AI to guide ensemble simulation exploration (as in ICF) should 
be leveraged as the framework for experimental exploration.  
Experimental efforts should focus on integrating the machine learning models to monitor and 
control the laser, targets, and analyze diagnostics. Significant research in HRR-capable target 
delivery systems and diagnostics should be made along with emphasis on the need to be able to 
actively control them.   

Each of these pieces will rely on advanced computational algorithm development and 
utilization of the best available hardware to eventually integrate experiments and simulations to 
fully realize autonomous discovery. Further enhancements in experimental operation speed 
(analysis, targeting, data handling) may be realized through the use of low power computing 
located near data sources (i.e. “edge computing”), which should also be explored. Researchers 
should partner with DOE advanced computational groups and the beamline accelerator to 
community to incorporate large-scale data handling strategies and the incorporation of edge 
computing, such as at LLNL’s high performance computing facilities and LCLS-II for 1 MHz 
experiments. Advanced computational methods investments focused on integrating experimental 
and simulations systems will both broaden the study of IFE parameter space and increase the rate 
of learning by more than three orders of magnitude.  

Collaborations with institutions in the US and facilities and abroad that have already had 
early successes with real-time experimental optimization (Shalloo, 2020) (Dann, 2019) should be 
strengthened. Investments in current HRR-capable facilities, such as those found in LaserNetUS, 
should be made in order demonstrate these technologies in preparation for future HRR HED 
facilities such as SLAC’s MEC-U (short pulse (150J, 150fs 10Hz); a 100J-class long pulse (10Hz); 
and a kJ long pulse).  
 Data standardization for both experiments and simulations should be emphasized to further 
increase the ability to share and collaborate between groups. The ability to quickly share data will 
be vital to progress in IFE research. By standardizing data and communication protocols, it may 
be possible to enable multi-facility, multi-scale experiments where lower power drivers can 
develop models that can be validated at larger scale facilities. This could then lead to further speed 
increases in learning for IFE. 

While many of the component advanced computational techniques are in everyday use for 
scientific applications, it will be necessary to emphasize the integration of these systems with HRR 
facilities to utilize DOE investments to their full scientific potential. Ultimately, investments in 
this area stand to increase scientific payoffs in support of IFE by several orders of magnitude. 
Demonstrations of AI-driven laser facilities will serve as roadmaps for safely operating IFE 
facilities with stable output.  
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